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People frequently share their emotions with friends and fam-
ily1, and increasingly do so on social media. This may have 
beneficial effects. Studies of affect labeling2 indicate that 

when people are shown emotionally evocative images, their dis-
tress or negative emotions are significantly reduced by the mere 
act of putting their feelings into words3–6. Affect labeling has 
also been shown to lessen anxiety and fear towards phobias7–9. 
Interestingly, affect labeling exerts its effects even when people 
do not deliberately intend to use it to regulate their emotions nor 
believe in its efficacy3. It can therefore be considered an implicit 
emotion regulation mechanism.

A number of empirical methods have been employed to mea-
sure the effects of affect labeling in the laboratory. Participants can 
be queried about their emotional experience7,10 after the presen-
tation of an emotion-evoking stimulus using introspective mea-
sures (for example, survey instruments and diaries11). Biophysical 
measurements of emotions11–18 (for example, measurements of 
facial musculature), in addition to brain-scanning techniques, can 
record individual reactions to emotionally evocative stimuli14,15,19–21. 
However, these measurements may involve extensive experimental 
and instrumental manipulation, which may introduce measure-
ment and observation challenges11.

Here, we measure the dynamics of naturally occurring (that is, 
not experimentally induced) individual emotions and their sponta-
neous expression in online language3 at the resolution of minutes for 
approximately 74,487 Twitter users. As shown in Fig. 1, we focused 
our analyses on tweets stating “I feel… ”, which we consider to be 
instances of affect labeling. We then investigated whether those 
expressions of positively or negatively valenced emotions were asso-
ciated with either intensification or attenuation of the original emo-
tion at different time points before and after the expression.

Our results confirm and extend existing work in the area of 
affect labeling2. We observed rapid reductions of negative emo-
tions and a less rapid reduction of positive emotions immedi-
ately after they have been expressed in written form. The effect 
generalizes across most individuals, indicating that it is probably 

not the result of differences in personality or social disposition. 
Participants were not aware of this research at the time they 
posted their tweets. Our study therefore extends previous labora-
tory studies to naturally occurring emotional expressions in an 
online social media platform.

Results
Figure 2 shows the time series of mean valence levels from 6 h before 
to 6 h after the affect labeling at time t0 for positive (Fig. 2a) and 
negative emotions (Fig. 2b) separately. The positive and negative 
emotions both exhibit a distinct pattern of change before and after 
the affect labeling: a positive ramp up and negative ramp down, 
respectively, before the individuals’ explicit positive and negative 
affirmations, followed by a respective ramp down and ramp up of 
the individuals’ emotional states afterwards. Positive and negative 
emotions seem to follow different trajectories; negative emotions 
have a longer ramp-down period, possibly starting at t0 −  2 h, but 
exhibit faster recovery immediately after the emotional expression 
than positive emotions.

As shown in Fig. 2a, the positive emotion shows a sharp peak 
of valence values before and after t0. This indicates that the indi-
viduals’ language reflects positive valence changes that match the 
valence of the positive affect labeling. Ramp up and ramp down of 
positive valence levels seems to be rapid and symmetrical around 
t0, with a sharp peak and reversal located at t0, indicating that the 
peak of emotional levels coincides with the emotional expression, 
and decays immediately after. All other fluctuations in the time 
series fall within a 95% confidence interval (CI) established from 
the distributions of valence values in the first 3 h of the time series. 
Similar CIs were observed when we sampled the last 3 h of the time 
series instead.

The negative emotion time series in Fig. 2b exhibits an equally 
sharp change in valence levels surrounding the emotional expres-
sion at time t0, but with a slower and longer ramp down before a 
sharp negative peak at t0, and fast reversal to the long-term mean 
within 10 min after the emotional expression.
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Detecting change points through cumulative sum testing. To 
confirm that the observed changes in valence were significant, 
we conducted a cumulative sum (CUSUM) test, which detected 
change points in each time series by measuring cumulative changes 
in its variance (see the Methods section ‘CUSUM test’). The results 
indicate significant changes in the positive group from t0 −  38 min 
to t0 +  53 min (grey band in Fig. 2a), indicating that positive emo-
tions typically last 92 min. A similar CUSUM test confirmed a 
period of significant changes in negative valence from t0 −  63 min 
to t0 +  9 min, indicating that negative emotions start earlier than 
positive emotions, take longer to crest and end sooner than the 

positive emotion after the emotional expression, with a typical 
duration of 73 min.

Modelling emotional dynamics. To model the dynamics of posi-
tive and negative emotions, we applied a least-squares method to 
determine the function that best fit the ramp up and ramp down 
of the positive and negative time series (see Supplementary Note 
5 and Supplementary Table 1). As shown in Fig. 3a, the ramp-up 
and ramp-down periods of the positive emotion are best fitted 
with a separate exponential growth function from time t =  − 38 to 
− 1 min (f(t) =  0.038e0.157t +  0.01) and an exponential decay function 
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Fig. 1 | Measuring changing valence levels from language before and after affect labeling. Our method involved six steps. (1) We collected the individual 
Twitter timelines of N Twitter users (denoted U1, U2, ..., UN) who explicitly expressed experiencing an emotion of a positive or negative valence at a specific 
time, t0, by writing “I feel” followed by an adjective or adverb. In the figure, ‘+ /− ’ represents a positive or negative emotion. This was deemed an act of 
affect labeling. (2) We aligned all individual timelines of time-ordered tweets on the time of the affect labeling (t0). (3) We applied a sentiment analysis 
algorithm (VADER) to tweets posted at specific time windows before and after t0 to detect possible changes in text valence levels. (4) We aggregated the 
observed valence levels within a given time window across all individuals to map changes in valence levels. (5) Emotions and language can be biased by 
other drivers, such as events, personal experience and dispositions. These effects were randomized across individuals (in steps 1 and 2). (6) The dashed 
arrow represents the assumption that language can interact with emotions. Our observations in step 4 may reflect this interaction in the timing and 
pattern of valence changes relative to the time of the explicit emotional expression at t0.

0.04

0.03

0.02

0.01

0

–0.01

–0.02

–0.03

–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6

Time from expression (h)

–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6

Time from expression (h)

V
al

en
ce

Smoothed mean

CUSUM: –2,280 s to 3,180 s

95% CI: 2.5 to 97.5

Smoothed mean

CUSUM: –3,780 s to 540 s

95% CI: 2.5 to 97.5

a b

Fig. 2 | Time series of observed valence values across all individuals. a,b, Time series of observed valence values in 1 min increments, smoothed by a 
10 min rolling average (positive, n =  42,627; negative, n =  67,316), for the positive (a) and negative (b) affect labeling groups. The time range extends from 
6 h before to 6 h after individuals explicitly expressed experiencing an emotion at time t0 (vertical red dashed line). The emotional expressions themselves 
at time t0 were excluded from this analysis and we did not analyse timelines that contained more than 1 explicit emotional expression within a 48 h span. 
We used the first 3 h to estimate a baseline 95% CI for the entire time series (horizontal blue and red shaded bars). A CUSUM test was used to detect 
statistically significant change points in the resulting time series. Grey vertical bars mark where the CUSUM analysis indicated significant change points 
based on each time series’ cumulative variance. Each time series was mean-centred by subtracting its mean over the 12 h span (see Supplementary Fig. 3 
for raw time series showing the difference in positive and negative time series’ baselines).
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from time t =  1 to 53 min (f(t) =  0.044e−0.070t +  0.01), respectively. 
For the negative emotion shown in Fig. 3b, the growth before t0 and 
decay period after t0 are also best fitted with a separate exponential 
growth function from time t =  − 63 to − 1min (f(t) =  − 0.024e0.020t) 
and exponential decay function from time t =  1 to 9 min (f(t) =   
− 0.200e−0.013t +  0.170), respectively.

On the basis of the fitted functions, we can calculate the half-life 
of positive and negative emotions. Given the peak value of an emo-
tion p and the emotion value at the end of emotional period e (aver-
age emotion score), we define the half-life as t(p+e)/2 −  tp, indicating 
the time it takes for the emotion to decay from the peak to half of its 
baseline value. By this definition, the half-life of positive and nega-
tive emotion is 11 and 5 min, respectively, indicating a swift return 
from peak levels to the valence baseline.

It is suggestive that most ramp ups and declines of the indi-
viduals’ emotional states—both positive as well as negative—are 
best fit with exponential trajectories when compared with other 
functions (see Supplementary Table 1). This may be indicative 
of the presence of feedback loops in the individuals’ emotional 
systems that were affected or interrupted by the individuals’ affect 
labeling at t0.

Mean valence CIs versus a null model. Each time window, w, 
in our data contained a (changing) sample of tweets that were 
posted within a distance, k, from t0; that is, tweets posted in the 
time interval t0 −  k −  w to t0 −  k. Since each tweet in that window 
had been assigned its individual valence rating, mean valence 
values for a window (such as shown in Fig. 2) were thus calcu-
lated for a distribution of n tweet valence values. The properties 
of this distribution could change in terms of sample size, location 
and variance between subsequent time windows, complicating 
inferences about differences in valence levels between different 
points of the time series. In addition, the volume of tweets for 
each time window could vary depending on the distance from 
t0 (see Supplementary Fig. 3). Our estimates of mean valence at 
time t may therefore be more or less uncertain depending on the 
underlying sample of tweets.

To estimate the error of our estimation of mean valence for the 
tweets observed in a given time window w, we bootstrapped 10,000-
fold (1) mean valence values and (2) null-model mean valence 
values (a random sample of tweets with similar diurnal, circadian 
and week-day features; see the Methods section ‘Null model’). To 
increase our sample size, we grouped tweets in 10 min windows. We 
then compared the resulting 95% CIs between observed valence val-
ues and those produced by the null model.

The results of this comparison are shown in Fig. 4. The time 
series are displayed for discrete and adjacent windows of 10 min. 
Comparable results were obtained with 1, 5 and 15 min windows. 
The 95% CIs of the estimated mean valence levels are shown (red 
and blue bands), as well as the 95% CI for the null-model estimates 
(grey band) for each window.

The CIs of the positive valence time series in Fig. 4a overlap with 
those of the null model for most of the 12 h period under consider-
ation, with the exception of the period from − 10 to + 20 min, where 
we observe that the CIs of the observed mean positive valence and 
those of the null model do not overlap. This period overlaps with the 
CUSUM change point detection, although it is shorter, possibly due 
to applying the stricter criterion of non-overlapping 95% CIs. We 
can draw a similar conclusion for the negative time series in Fig. 4b; 
that is, the 95% CIs do not overlap from − 40 to 0 min, confirming a 
negative emotional period similar to that given by the CUSUM test. 
The span of the emotional period estimated by this strict criterion 
might be an underestimation, since areas where the CIs do overlap 
might still represent cases where valence levels are significantly dif-
ferent from null-model levels.

Estimating emotion duration. The CUSUM and 95% CIs indicate 
different, yet overlapping, emotional periods surrounding time t0, as 
shown in Table 1. The timing of the emotional period as indicated by 
the CUSUM test indicates time ranges of elevated or depressed valence 
distributions from − 38 to + 53 min for the positive emotion and − 63 
to + 9 min for the negative emotion. The CIs indicate a period of sig-
nificant divergence in valence versus the null model in the ranges of 
− 10 to + 20 min and − 40 to 0 min for the positive and negative emo-
tions, respectively. As a third indication of the duration of the respec-
tive emotions, we added a less strict criterion; namely, the time period 
when the time series remains continuously above or below the median 
surrounding t0. This criterion indicates that the positive emotional 
period ranges from − 48 to 109 min and the negative emotion period 
ranges from − 124 to 14 min.

Averaging the results of these three tests, we estimate that posi-
tive emotions range from − 32 to + 61 min (that is, a total duration of 
94 min), whereas negative emotions range from − 76 to + 8 min (that 
is, a total duration of 85 min). This indicates that negative emotions 
do not last longer than positive emotions, but they start earlier, have 
a significantly longer run-up, and seem to decline and end more 
rapidly after their expression.

Robustness across subject samples. To assess the degree to which 
the time series reflected the emotional dynamics of a majority of 
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Fig. 3 | Curve-fitting results of the smoothed mean valence values. a,b, Mean-centered time series of smoothed mean valence values for both positive 
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individuals, and not a minority of extreme responders, we recorded 
the distributions of the peak valence values (expressed in z scores) 
that surrounded t0 for each individual valence time series (posi-
tive and negative groups separately; see Supplementary Note 6). As 
shown in Fig. 5a, the distribution of positive peak responses had 
a 95% CI of − 1.240 to 2.417 and a median of + 1.096, whereas the 
distribution of the negative peak responses (Fig. 5b) had a 95% CI of 
− 2.434 to 1.285 and a median of − 1.073, indicating that the negative 
and positive peak values were consistent with the positive or nega-
tive valence of the individuals’ affect labeling. This result was con-
firmed with a two-component Gaussian mixture model (GMM), 
which indicated that the most significant GMM components 
matched the valence of the affect labeling statement (see Fig. 5a,b).

These results confirm a strong and consistent emotional 
response that generalizes across most individuals for both nega-
tive and positive emotions, but the distributions of peak z values 
do exhibit a positive and negative skew, respectively (see Fig. 5a,b). 
Although GMM component 1 of the distribution of negative peak 
values is centred on negative values, as expected, GMM component 
2 is focused on neutral peak values, indicating attenuated or neu-
tral peak valence z scores. The distribution of positive peak z scores 
exhibits a symmetrical pattern: it is centred on positive peak values 
with component 1, but exhibits a negative skew, due to component 2,  
that is centred around lower, more neutral peak sentiment values.

For negative and positive emotions, we found that 16.80 and 
17.89% of peak values, respectively, ran contrary to the polarity of 
self-reports (that is, a positive peak value for negative emotions and 
a negative peak value for positive emotions). These results suggest 
that our observations of emotional responses around t0 are probably 
an underestimation of the actual effect, since our data may include 
a subset of cases where the sentiment analysis yielded a neutral, 
attenuated or inverted sentiment signal.

Male and female responses. The above results suggest a robust and 
generalizable emotional response across most individuals. This is 
also the case when we separate our analysis for male (see Fig. 6b,d) 
and female individuals (see Fig. 6a,c) using a gender classifier (see 
the Methods section ‘Gender classifier’, Supplementary Note 7 and 
Supplementary Fig. 5).

The effect in which negative emotions dissipate rapidly after the 
individuals’ explicit expression22,23 appears more pronounced for 
women (see Fig. 6c) than men (see Fig. 6d) on the basis of a visual 
inspection of the relevant time series, indicating that women may 
experience a stronger positive effect of expressing their emotions 
than men do or use different regulation mechanisms24.

When we applied the same CUSUM test and examined the tim-
ing of non-overlapping 95% CIs to detect significant changes in 
valence levels in the separate male and female time series, we found 
overlapping periods of diverging valence around t0 in all time series 
(see Table 2). This indicates a significant emotional signal before 
and after t0 for both male and female individuals separately.

However, this observation pertains to emotion magnitude and 
duration, not whether the pattern of the emotional change evolves 
differently for male and female individuals. To determine whether 
there are indications of gender differences in longitudinal dynam-
ics, we compared the magnitudes of the male and female valence 
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Table 2 | CuSuM and CI-based estimates of emotion duration 
by gender

Gender (emotion) 95% CI duration 
(span)

CuSuM duration 
(span)

Female (+ ) 20 (− 10 to + 10) 94 (− 41 to + 53)

Male (+ ) 20 (− 10 to + 10) 97 (− 48 to + 49)

Female (− ) 40 (− 40 to 0) 48 (− 41 to + 7)

Male (− ) 10 (− 10 to 0) 40 (− 32 to + 8)

All values shown are in minutes. CI-based estimates were calculated at 10 min intervals and 
CUSUM estimates at 1 min intervals. ‘(+ )’ and ‘(− )’ represent positive and negative emotions, 
respectively.

Table 1 | Duration and span of changes in valence levels

Positive valence Negative valence

Method Length Span Length Span

CuSuM 92 − 38 to + 53 73 − 63 to + 9

95% CI 31 − 10 to + 20 41 − 40 to 0

v(50p) 158 − 48 to 109 139 − 124 to 14

Average 94 − 32 to + 61 85 − 76 to + 8

All values shown are in minutes. Emotion durations are estimated according to the three methods: 
CUSUM test; non-overlap with the 95% CI; and the length of the continuous time period within 
which valence levels deviate from the median (50p) before and after t0. The bottom row shows 
the mean of the three methods.
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curves at different times before and after the emotional expression 
with a regression discontinuity analysis25.

We plotted the difference of valence values between male and 
female individuals at time t (that is, v(t) =  vmale(t) −  vfemale(t)) for 
positive and negative valenced emotions in Fig. 7a,b, respectively. 
Separate regression lines were calculated for v(t) values before ver-
sus after t0, including 95% CIs on the linear regression estimates. 
This allowed us to determine whether male and female valence 
values evolve differently before or after the time of their emotional 

expression, and whether the regression lines show statistically sig-
nificant discontinuities.

As we observed earlier, there is a consistent and significant 
baseline difference between male and female valence for both posi-
tive- and negative-valence emotions. The difference between male 
valence and female valence is in the range − 0.02 to − 0.10, indicat-
ing that women generally have higher valence baselines at all points 
before or after the emotional expression than men, for both positive 
and negative emotions.
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At the time of an emotional statement (that is, t0), we observe 
discontinuities for both positive and negative emotions, indicating 
that male and female valence diverge at the time of the expression. 
This pattern is most pronounced for the positive valence time series 
(see Fig. 7a). Before the emotional expression, the gender differ-
ence increases (the downward slope indicates that female valence 
increases more rapidly than male valence). This pattern is reversed 
immediately following the emotional expression, indicating that 
women experience a smaller reduction of positive emotions after 
the statement at time t0 than men do.

As shown in Fig. 7b, the negative valence time series indicates a 
constant baseline valence difference between men and women before 
the expression, indicating that the difference between male and 
female valence does not increase or decrease before the expression of 
a negative emotion. However, we again observe a discontinuity at the 
affect labeling at time t0, although the CIs overlap slightly and we can-
not draw any firm conclusions about the statistical significance of the 
effect. Women seem to revert to baseline levels of negative valence 
emotions more slowly than men do after the affect labeling.

Discussion
Our analysis reveals significant minute-to-minute changes in 
valence levels before and after an individual performs an act of affect 
labeling on Twitter. We found that, for a majority of individuals, 
emotional intensity decreased rapidly after their explicit expression 
in an “I feel” statement. This was the case for positive and negative 
emotions, but the effect seemed to be strongest and most immediate 
for negative emotions.

We also empirically determined the parameters of how emo-
tions changed over time because of the evolving traces they left in 
our individuals’ language. Valence levels increased rapidly along an 
accelerating trajectory before the affect labeling, followed by a sharp 
reversal at the time of the affect labeling, and a fast return to previ-
ous baseline levels of valence afterwards. Our results indicate that 
emotions last approximately 1.5 h from onset to evanescence, with a 
decay half-life of about 11 and 5 min for positive and negative emo-
tion, respectively.

We also found inconclusive but suggestive indications that the 
evolution of positive and negative emotions may differentiate by 
gender, and that they differentiate most strongly at the time of the 
affect labeling.

Our study extends the present literature on affect labeling. We 
did not merely observe the effects of affect labeling in attenuating 
induced emotions, but observed and modelled their dynamics over 
time at high temporal resolution, for a large sample of individuals 

and for naturally occurring emotions. We calculated the duration of 
these changes in valence values, their half-life and the trajectories 
along which they take place.

Our results also extend recent work26,27 suggesting that sentiment 
analysis may reflect individuals’ emotions as well as text sentiment. 
Assuming that the individuals in our sample correctly labelled their 
affect, our observations indicate that emotions may affect language 
hours before and after individuals choose to express them explicitly.

Our method has some limitations. We relied entirely on a post-
hoc, data-driven analysis. Although this reduced the possibility of 
some forms of observer bias, it is nevertheless possible that our 
sample was biased by particular social media characteristics such 
as recruitment and interface design. In addition, since social media 
platforms provide a public outlet, social drivers may need to be 
accounted for in future research, as well as a comparative analysis of 
different languages, and possibly culture. However, our null model 
was designed to account for many such biases by sampling from the 
respective positive and negative subject groups separately and tak-
ing into account diurnal and circadian rhythms.

It is not clear to what degree social media provides a represen-
tative sample of the overall population, nor of the range of emo-
tions that may naturally occur. Future investigations may require 
experiments that cross-validate measurements of emotions from 
large-scale social media data against ground truth obtained from 
biophysical measures, including those of facial musculature.

Although valence is one of the primary components of most 
models of human emotions, our sentiment analysis does not capture 
the rich spectrum of human emotions. Our computational indica-
tors may therefore need to be expanded to provide a more com-
plete picture of the dynamics of a variety of human emotions across 
multiple languages and cultures, including arousal, dominance, fear, 
amusement, calm and others that have recently been uncovered by 
an analysis of self-reports28. Here, we used an off-the-shelf senti-
ment analysis tool geared towards rating English text with respect 
to valence only, but alternative natural language-processing tech-
niques could be designed to detect a larger variety of emotions29.

Taken together, our results lay the foundations for the develop-
ment of mechanistic models of individual as well as population-level 
emotional dynamics, which can provide new insights into the inter-
action between language and emotion and, finally, the processes 
through which individuals may self-regulate their emotional state.

Methods
Data and sample. We randomly chose approximately 710,000 Twitter user 
identification numbers and issued requests to Twitter’s application programming 
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interface to retrieve all past tweets by the given users (up to a maximum of the 
3,200 most recent tweets at the time of collection). The harvesting took place in 
2012; hence, the dates of our tweets range from 2006 (Twitter start date) to 2012 
(time of collection). For every user, we obtained public profile information, and  
for every tweet, we retrieved a unique identifier, its content (140 characters) and 
the local coordinated universal time at which it was posted. All timelines were 
stored in a MongoDB database allowing fast and efficient programmatic access.  
Not all accounts queried were active or functional, so our final sample consisted  
of 665,081 individuals. In total, our database contained 1,150,447,758 tweets across 
all individual timelines.

As shown in Fig. 1, we then used a two-level approach. First, we identified a 
cohort of individuals who at some time explicitly and unambiguously reported 
having a positive or negative emotion through affect labeling. Second, we rated 
the text valence of the tweets that were submitted by these same individuals before 
and after their expression using the Valence Aware Dictionary and Sentiment 
Reasoner (VADER) sentiment analysis tool30 to trace the evolution in language of 
the reported emotion over time.

Detecting affect labeling in tweets. We identified instances in which individuals 
explicitly and unambiguously reported their emotional state by searching for tweets 
that contained the statement “I feel… ”, including two grammatical variations:  
“I am feeling” or “I’m feeling”—an approach developed earlier to detect personal 
emotions through self-reports29,31,32. We assessed the statements’ emotional valence 
(whether they were about having a positive or negative emotion) from the valence 
value of the adverb or adjective that followed “I feel” using the Center for Reading 
Research Affective Norms for English Word (ANEW)33—a lexicon of 13,916 
valence-rated English terms. For example, “I feel so unhappy” was taken as an 
instance of negative affect labeling since “unhappy” has a strong negative valence 
rating in ANEW. Here, we focused on valence since it is a dominant component in 
most descriptive and nominal models of human emotions34–40.

Note that we used the “I feel” expression (our affect labeling marker) only as a 
binary diagnostic, to determine whether or not the subject reported a positive or 
negative emotion at the specific time. The statement was neither used to analyse 
the emotion itself, nor to capture the fullest possible spectrum of human emotions. 
We considered only the clearest and most unambiguous indications that a positive 
or negative emotion did indeed take place.

To this end, we identified ten of the most frequent and explicit valence-related 
adjectives or adverbs in all “I feel” statements, ranked by their valence ratings in the 
Center for Reading Research ANEW lexicon33 (see Supplementary Note 2). These 
were: ‘good’, ‘happy’, ‘great’ and ‘awesome’ (positive valence); and ‘bad’, ‘unhappy’, 
‘sad’, ‘terrible’, ‘horrible’ and ‘awful’ (negative valence). We also included a few 
boosters (‘so’, ‘very’, and so on). The adjective ‘unhappy’ was included to balance 
the positive ‘happy’.

This set of 10 adjectives represented 98.27% of all “I feel” statements 
(n =  112,873) in our data (see Supplementary Fig. 1) that unambiguously pertained 
to high or low valence only (excluding those that did not, such as “I feel weird” or 
“I feel sick”). Adding more adjectives and adverbs would therefore only slightly 
increase our sample, but at the expense of reducing the validity of our observations 
(see Supplementary Note 2).

We then retrieved all tweets posted by individuals making the mentioned affect 
labeling statements (109,943 individuals). As mentioned, we used the valence of 
the adjective or adverb of the expression to separate our timelines into a positive 
affect labeling group (n =  42,627) and a negative affect labeling group (n =  67,316).

To avoid traces of other explicit or intentional emotional statements biasing 
our results, we excluded (1) the self-report tweet itself and (2) any timelines that 
contained more than 1 self-report statement within 48 h of each other. To increase 
the odds of each timeline in our dataset representing a single, independent 
positive or negative emotion, we removed: (1) ‘retweets’, since they did not 
necessarily reflect the subject’s own emotional state; (2) individuals who posted 
more emotional expressions than 95% of individuals in our data; (3) tweets that 
were posted on days that were unusual in terms of their number of emotional 
expressions (that is, days with fewer “I feel” tweets than 5% or more “I feel” tweets 
than 95% of other days in the year); (4) tweets that contained “I feel”, “I am feeling” 
or “I’m feeling”, but no adjective or adverb with a known valence rating; and  
(5) timelines from users without time zone information, to avoid confusion with 
respect to circadian rhythms41 and time of day. We also removed cases in which 
the same subject posted more than 1 emotional expression in the same 48 h period 
t0 – 24 h to t0 +  24 h. After these filters, 74,487 timelines remained, of which most 
(that is, 73,185 (98.25%)) were majority English.

Sentiment analysis of tweets posted before and after the affect labeling. For 
all individuals in both groups, we retrieved the tweets posted on their individual 
timelines 6 h before to 6 h after the time of the emotional expression (that is, a total 
of 12 h surrounding the expression). We centred all the resulting 12 h timelines on 
the time of the expression, referred to as t0.

We used VADER—an accurate, open-source Twitter sentiment analysis 
algorithm introduced by Hutto and Gilbert30—to assign each individual tweet 
(again excluding the emotional statement itself) a numerical valence score between 
− 1 (very negative) and + 1 (very positive). VADER recognizes 7,516 terms of the 

most frequently used English words, each rated by 10 independent human raters 
assessing their valence value, and was designed to recognize negations, hedging, 
boosters, colloquial language, style, jargon and abbreviations that are commonly 
used on Twitter. It responds only to English; hence, our analysis automatically 
ruled out non-English users and content.

The F1 classification accuracy of VADER on Twitter datasets was found 
to be 0.96, which surprisingly exceeds that of individual human raters (0.84). 
A recent survey42 also suggested that VADER produces the highest accuracy 
sentiment rankings for a dedicated Twitter dataset (F1pos =  99.25; F1neg =  98.33; 
Macro-F1 =  98.79; Coverage =  94.61) among 22 tools, surpassing commonly used 
tools such as Linguistic Inquiry and Word Count and SentiStrength.

It is important to stress that the performance of VADER has been vetted in the 
context of text sentiment analysis (that is, whether a short text evinces a positive 
or negative sentiment), but not its ability to measure the emotions of the subject(s) 
who produce the text. In fact, our results may shed light on the question of whether 
or not text sentiment analysis does reveal subject emotions. We also note that 
language has been shown to exhibit a ‘positivity bias’ because people prefer to use 
words with higher valence ratings43 and the VADER sentiment analysis tool is not 
normed to operate on an absolute scale. As a result, a group of negative tweets can 
yield a numerically positive VADER rating. In our analysis, we did not rely on the 
absolute value or sign of the VADER rating, but the pattern of change of valence 
values over time relative to a null model.

Time series construction. Tweets were individually posted at irregular points 
in time within the mentioned 12 h period (that is, centred on the emotional 
expression at time t0). To observe changes in emotional valence relative to t0, we 
grouped tweets in discrete 1 min time windows according to the time (t0 ±  k) when 
they were posted, from 6 h before t0 to 6 h after t0 (that is, − 360 to + 360 min), and 
we did so separately for both positive and negative groups.

Each 1 min window therefore contained a set of tweets that were posted at that 
given distance k from t0, producing a distribution of VADER valence values. To be 
able to draw inferences about significant changes in valence levels over time, we 
obtained converging evidence through two distinct methods. First, we produced a 
time series of mean valence values for each 1 min window and applied a CUSUM44 
procedure that examined cumulative changes in the time series’ variance to detect 
significant change points. Second, we bootstrapped mean valence values and 
compared the resulting distribution and its 95% CIs with those produced by a null 
model of a random sample of tweets with similar weekly, circadian and diurnal 
features to the tweets in the time window under consideration41.

We thus obtained two sources of evidence with respect to significant changes in 
valence levels.

Null model. To determine whether we were observing significant changes in 
valence across our time series, we defined a null model with which we compared 
the observed valence values for each time window. To account for individual 
dispositions (individuals expressing negative emotions might be more negative 
overall than individuals expressing positive emotions), we randomly sampled 
tweets from the set of positive and negative timelines to construct separate positive 
and negative null models. Furthermore, we accounted for diurnal cycles and their 
effect on the timing of emotional expression by randomly sampling tweets from 
the 24 h surrounding t0. We ensured that the random sample matched the time 
of day and week day (Monday, Tuesday, and so on) distribution of the observed 
sample, since some emotional expressions might be more common or biased at 
certain times of the day or on certain week days (for example, Monday morning 
versus Friday night). Since the volume of tweets changed in each time window 
(see Supplementary Fig. 2), we sampled the same number of random tweets in our 
null model as we observed for the specific time window. Therefore, as shown in 
Fig. 4, CI bands narrowed towards t0, since the volume of tweets increased and the 
uncertainty of our mean valence estimates thus decreased. Finally, we computed 
mean valence and CIs for each time window of our null model, by repeating this 
sampling procedure 10,000 times (with replacement), allowing us to compute 5th, 
50th and 95th percentiles for the resulting distribution of mean valence values.

Note that this procedure resulted in a null model that was more strict than 
an entirely random sample of all tweets and all individuals, since it required that 
any valence change observed in a given time window diverged significantly from 
one that was expected by chance for the same cohort of positive and negative 
individuals, the same number of tweets observed, the same time of day, the 
same week day, and within the same circadian and diurnal cycle as the tweets we 
observed in our timelines.

CUSUM test. We applied the CUSUM anomaly detection method on the t0 ±  6 h 
smoothed mean time series. First, we calculated the CUSUM chart, which 
contained the upper control limit series by = + − ++

−
+S S x T Kmax(0, ( ))i i i1  and the 

lower control limit series by = + − −−
−
−S S x T Kmin(0, ( ))i i i1 , where xi represents 

the series value at i. and T and K are the mean and s.d. of the corresponding null-
model series, reflecting the expected mean and s.d. of the median score series. 
Then, points that satisfied >+S Hi  and < −−S Hi  (H =  0.01) were chosen as the 
upper and lower violations, respectively. Anomalies were detected by picking the 
increasing subsequences of the upper violations and decreasing subsequences of 
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the lower violations. Sequences that were longer than λ  =  40 min were determined 
to be periods of significantly elevated or attenuated valence levels, meaning that in 
these periods individuals’ emotions were significantly higher or lower than chance 
levels.

Gender classifier. Men and women may differentiate with respect to how they 
experience and express emotions45,46. However, Twitter does not provide reliable 
gender information about its users, other than what they may sporadically self-
report. Following ref. 47, we therefore used a binary classifier (random forest with 
160 estimators)48–50 that was trained on a set of Google Plus profiles with manually 
verified gender information (1,744 individuals, including 658 females and  
1,086 males). The classifier achieved an acceptable accuracy of 86.4% and an area 
under the curve score of 0.916 (see Supplementary Note 7).

Separating our sample according to gender resulted in two timelines 
differentiated by emotional valence only (positive and negative; all individuals 
combined), as well as four timelines differentiated by gender (female and male) 
and emotional valence (negative and positive).

With respect to accuracy, note that incorrect gender predictions will have 
led to mixed samples and reduced the magnitude of any observed male–female 
differences. Hence, the gender effects we report are probably underestimations of 
the true effect, as our male group may contain females and vice versa.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. The code and related data of this study are freely available from 
https://github.com/onurvarol/Rui-Bollen_NHB allowing reproduction. Additional 
data and information are available from the authors upon reasonable request.

Data availability
The Twitter content data that support the findings of this study are publicly 
available from Twitter, but cannot be distributed by the authors. The authors 
provide the Twitter identification codes of all tweets used in this analysis to allow 
for retrieval of their content from the Twitter application programming interface. 
All other data are available from the authors upon reasonable request.
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Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection Python 2.6

Data analysis Python 2.7, Python modules: numpy, matplotlib, json, pandas, scipy, statsmodels, lmfit, sklearn (all open-source)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The Twitter content data that support the findings of this study are publicly available from Twitter, but cannot be distributed by the authors. The authors will 
however provide the Twitter identification codes of all tweets used in this analysis to allow for retrieval of their content from the Twitter API. All other data are 
available from the authors upon reasonable request. 
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Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Quantitative using existing, public text data: a longitudinal analysis of the changing valence levels of Tweets posted by Twitter users 
shortly before and after they labeled their affect using existing time-coded, individual Twitter text data.

Research sample A random selection of 710,000 Twitter users who self-selected through their participation in the Twitter social networking platform.

Sampling strategy Sampling procedure: random, sample size of 710,000 individuals was based on availability. Sample size was chosen to be largest by 3 
orders of magnitude vs existing affect labeling studies.

Data collection Python 2.6 and Twitter API (https://developer.twitter.com/)

Timing 2012 (timeline harvest from Twitter API): resulting sample of Tweets ranges from 2006 to 2012.

Data exclusions No data were excluded from our analysis.

Non-participation Participants were not invited to participate since the study used pre-existing, publicly available Twitter posts.

Randomization Participants were not allocated into experimental groups.

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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