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1.1 Introduction

Social media serve as a medium to disseminate information and a plat-
form to connect millions of individuals. Properties of social media make it
the ideal tool for communication, however, entities with malicious intentions
have strong motives to abuse online social networks to profit or gain power
by boosting their popularity, manipulating online discussions, and targeting
certain groups to attack [29, 27, 74].

Increasing evidence suggests that social platforms like Twitter accommo-
date an increasing number of autonomous entities known as social bots [29, 4].
A recent study estimates between 9% to 15% of the accounts on Twitter dis-
play bot-like behaviors [78]. These autonomous entities are controlled by soft-
ware that generates content and establishes interactions with other accounts.
It is fair to point out that not all bots have malicious intentions; many are
used for benign tasks, such as dissemination of news and publications [56, 41]
and coordination of volunteer activities [73]. But there is a growing record of
vicious applications of social bots.

Examples of malicious social-bot use include emulating human behavior to
manufacture fake grassroots political support [72, 34], promoting terrorist pro-
paganda and recruitment [5, 31, 7, 43], manipulating stock and advertisement
markets [19, 27], and disseminating rumors and conspiracy theories [6].

The magnitude of the problem is underscored by a social bot detection
challenge recently organized by DARPA to study information dissemination
mediated by automated accounts and to detect deceptive activities carried
out by these bots [76]. Researchers also point to the possibility of social bot
involvement in online discourse about the US presidential election in 2016 [7,
43].

1.2 Social bot detection

Discussion of social bot activity, the broader implications for social network
platforms, and the detection of these accounts are becoming central research
avenues [50, 12, 83, 8, 20, 29]. Previous research categorized various types and
modus operandi of social bots [63, 66, 46].

Mainstream research e↵orts have focused on three approaches to detect
social bots: holistic, pairwise, and egocentric analysis. Each approach presents
its own advantages and disadvantages to analyze the activities of users.
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1.2.1 Holistic approach

In terms of performance and accuracy, the holistic approach performs bet-
ter than other methodologies, since it captures more information about ac-
counts and their interactions. However, capturing a complete picture of social
networking systems is not practical outside of the companies that own the
platforms themselves.

Having complete information about social network structure, user interac-
tions, and online activities allows social media companies to build operational
systems. Examples of studies discussing holistic solutions focus on cluster-
ing behavioral patterns of users [80] and classifying accounts using supervised
learning techniques [83, 50]. For instance, Beutel et al. extract behavioral sim-
ilarities by decomposing event data in time, user, and activity dimensions [8].

Advantages of this approach over other methodologies come from the avail-
ability of complete data. Other methodologies lack full knowledge of social ties
that are hard to collect due to their dynamic nature. Companies can also track
user behaviors such as impressions on each posts, time spent on user profiles,
and usage statistics of the website to extract useful features. Such behavioral
features have been studied to measure the credibility of online information [33]
and purchasing behaviors [40].

A limitation of this approach is the computational complexity of analyzing
such massive data in real or near-real time with limited resources. Recent
advances in deep learning and reinforcement learning may help mitigate these
limitations.

1.2.2 Pairwise account comparison

Evidence of so-called botnets — coordinated collectives of software-
controlled fake accounts — has been observed in support of the Syrian War [1]
as well as in seemingly aimless activities [26]. The comparisons of temporal
or content patterns among pairs of accounts can reveal significant similarities
that are unlikely to emerge organically.

The idea is to enumerate all elements of certain account features, such as
friends, followers, URLs, hashtags, and so on. Pairwise comparison between
sets defined for each user can then be used to compute account similarities.
Such methodology has also been applied to cluster memes on social media [28,
44].

The pairwise comparison methodology has been used to detect abnormally
correlated user activities [16]. An advantage of this approach is that the com-
puted similarity matrix can be employed in both supervised and unsupervised
learning frameworks [77, 62]. However, the computation of pairwise similari-
ties in huge networks is very costly without some heuristics to narrow down
the possible pairs.
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1.2.3 Egocentric analysis

Egocentric analysis captures and evaluates information about a single user
at a given point in time. When performed by users, as opposed to the platform
owners themselves, one is usually restricted to collecting the public subset of
information about other accounts. However the trade-o↵ between computa-
tional complexity and accuracy favors this simpler approach in many cases.

In the literature, we have observed several examples of system designed to
operate with limited information resources by considering single accounts [17,
18, 20, 50]. Most of the research in this direction relies on annotations by
experts and crowd-sourcing workers to train supervised learning algorithms
and evaluate the consistency and e↵ectiveness of di↵erent detection systems.

1.3 Online bot detection framework

In this section, we present an online bot detection system, Botometer
(botometer.iuni.iu.edu), that is freely available for academic and public
use as part of the Observatory on Social Media (OSoMe) project [23]. Our
system extracts 1150 features from a collection of tweets related to a given
Twitter account and uses them in a machine-learning framework to classify
the account as being operated by a bot or a human [78, 24]. Accessible via
a website and an API, our system served over 30 million requests in the first
several months after public release in 2016, as shown in Fig. 1.1.

Our desire to build a bot detection system for public use informed the
choices of criteria for building feature sets and training classifiers. As a
publicly-available service, we require the system to be simultaneously fast
and reliable. Single-request speed is important in order for the website to feel
responsive, while reliability is critical for API users submitting requests in
bulk.

With single-request speed in mind, we took computational e�ciency into
account as well as accuracy when selecting a feature set. Details of the features
implemented are discussed in Sec. 1.3.1.

Additionally we limit analysis to only the most recent activity from a given
account. This is a result of strict rate limits on the Twitter API; each evalu-
ation by Botometer only requires a single call to each Twitter API endpoint
used, thus maximizing the number of account analyses possible per unit time
and minimizing the total time required to classify a single account.

Besides speed and reliability, public availability necessitates that our sys-
tem be useful without any special data or permission from the platform own-
ers. As such, we only use public data from the Twitter API according to their
terms of service.

Considering factors of computational e�ciency, performance, and infor-
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FIGURE 1.1: Number of daily requests (bottom) and unique requesters
(top) served by the Botometer system.
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mation access, the egocentric approach to classification best fits our design
goals.

1.3.1 Feature extraction

Our approach to egocentric classification of a given Twitter user leverages
three main types of data obtained from the Twitter REST API1: the user
profile, tweets produced and broadcasted (retweeted) by the user, and tweets
authored by other accounts mentioning the target user.

Quotas on the number of requests per unit time to each Twitter API end-
point present a trade o↵ between accuracy and classification volume: more
API calls per user yield more data, which may improve accuracy, but pro-
portionally decrease the number of accounts one can analyze before reaching
the quota. Our system harnesses the most recent 200 tweets by the user and
100 tweets mentioning the user. These quantities correspond to the maximum
number of tweets that can be collected with a single API request to each end-
point (each endpoint is individually rate-limited). Therefore this choice is a
natural trade-o↵ between data volume (performance) and accuracy.

The public data and meta-data about the target user, collected using the
Twitter API, is distilled into 1,150 features. These features are roughly cate-
gorized as friends, tweet content and sentiment, network patterns, and activity
time series. Next we present details about the individual features in each class.

1.3.1.1 User-based features

As with other systems analyzing Twitter users and behavior, we leverage
user meta-data features extracted from meta-data [60, 29]. First we count
the length and number of digits in the user’s screen name and user name

(these can di↵er on Twitter). Users can also provide a textual description of
themselves; we consider the length of this field as well as the number of unique
descriptions observed in tweets from users connected via retweet, mention, etc.

User activity and connectivity in its simplest form can also provide signals
for classification. We extract numerical features about number of friends

and followers, as well as of di↵erent activity types such as tweet, retweet,
mention, and reply. We consider both the total number of tweets in each
type as well as their temporal rate. Further discussion of these social relations
and tweet types can be found in the next section.

When a new account is created on Twitter, default values are used for some
profile fields, such as profile image, until changed by the user. We use binary
features indicating whether or not a given account has each of these default
properties. We also extract features about account age and time-zone.
For a complete list of features in this category see Table 1.1.

1
dev.twitter.com/rest/public
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TABLE 1.1: List of features extracted from user profile.

List of user-features
Screen name length
Number of digits in screen name
User name length
Time o↵set (sec.)
Default profile (binary)
Default picture (binary)
Account age (days)
Number of unique profile descriptions among connected users
(*) Profile description lengths for connected users
(*) Number of friends distribution
(*) Number of followers distribution
(*) Number of favorites distribution
Number of friends (signal-noise ratio and rel. change)
Number of followers (signal-noise ratio and rel. change)
Number of favorites (signal-noise ratio and rel. change)
Number of tweets (per hour and total)
Number of retweets (per hour and total)
Number of mentions (per hour and total)
Number of replies (per hour and total)
Number of retweeted (per hour and total)
(*) Distribution types. Following statistics are computed and used as individual features:

min, max, median, mean, std. deviation, skewness, kurtosis, and entropy.
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TABLE 1.2: List of features extracted from neighbors of user. We consider
four types of users: retweeting, mentioning, retweeted, and mentioned.

List of friend-features
Number of distinct languages
Entropy of language use
(*) Account age distribution
(*) Time o↵set distribution
(*) Number of friends distribution
(*) Number of followers distribution
(*) Number of tweets distribution
(*) Description length distribution
Fraction of users with default profile
Fraction of users with default picture
(*) Distribution types. Following statistics are computed and used as individual features:

min, max, median, mean, std. deviation, skewness, kurtosis, and entropy.

1.3.1.2 Friend features

Twitter actively encourages social connectivity via following other ac-
counts. Users can follow any public profile, and the follow relation need not
be reciprocal. The reverse of the follower relation is the friend relation: if
A follows B, then B is a friend of A.

In this setting content can disseminated by users rebroadcasting other
users’ tweets via retweets. A tweet can be addressed to one or more specific
users by mentioning the target users’ screen names. We consider four types
of links: retweet, mention, being retweeted, and being mentioned. Grouping
tweets by their link type, we extract friend-features for each group separately.

Groupwise distributions of user meta-data are then extracted for accounts
in the group. We compute distributions for number of friends, followers, and
tweets, length of profile description, account age, and time-zone o↵set. For
each distribution we compute mean, maximum, minumum, and median values,
along with skewness, kurtosis, and entropy.

We also consider the number of unique languages represented in the group
as well as entropy of language use as features. The fraction of those users with
default profile information is also included. All of the features in this category
are listed in Table 1.2.

1.3.1.3 Network features

Network structure can contain information useful for characterizing di↵er-
ent types of communication. Network features have notably been leveraged in
the context of astroturf detection [72]. Our system constructs three types of
networks: retweet, mention, and hashtag co-occurrence.

Retweet and mention networks are represented as weighted, directed net-
works with users as nodes and retweets/mention tweets as links. The link
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TABLE 1.3: List of features extracted from interaction and hashtag
co-occurrence networks. We consider three types of network: retweet, mention,
and hashtag co-occurrence networks.

List of network-features
Number of nodes
Number of edges (also for reciprocal)
(*) Strength distribution
(*) In-strength distribution
(*) Out-strength distribution
Network density (also for reciprocal)
(*) Clustering coe↵. (also for reciprocal)
(*) Distribution types. Following statistics are computed and used as individual features:

min, max, median, mean, std. deviation, skewness, kurtosis, and entropy.

direction corresponds to the information flow: toward the user retweeting or
being mentioned. The edge weight represents the frequency of interaction.

A hashtag is a word prefixed with the hash (#) symbol, and is used in
Twitter as a topic identifier. Hashtag co-occurrence networks are weighted,
undirected networks with hashtags as the nodes. Two hashtags are linked
when they occur together in a given tweet, and the edge is weighted according
to the frequency of the co-occurrence in tweets.

Given the local nature of egocentric data collection, we utilize simple net-
work features that quantify local interactions. These measures also happen
to be the least expensive to compute. The most straight-forward features we
consider are number of nodes and edges, as well as the density of the network.
We also include features extracted from distributions of local clustering coef-
ficients and (in-/out-)strength, or weighted degree. Subgraphs of the retweet
and mention networks that contain only reciprocal links are additionally con-
sidered and used for feature extraction. The complete list of features in this
category can be found in Table 1.3.

1.3.1.4 Content and language features

Content and linguistic analysis of tweets have been used for a wide variety
of applications [21, 58, 64, 13, 51, 22]. The simplest content features we use
come from word counts and text entropy.

Other content features are extracted by applying the Part-of-Speech (POS)
tagging technique, which identifies di↵erent types of natural language com-
ponents. We consider 9 types of POS tags: verbs, nouns, adjectives, modal
auxiliaries, pre-determiners, interjections, adverbs, wh-, and pronouns. Distri-
butions of POS tag occurrences are used to extract features to reflect use of
di↵erent language styles [15]. For a complete list of features in this category
see Table 1.4.
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TABLE 1.4: List of features extracted from content of tweets.

List of content-features
(*,**) Frequency of POS tags in a tweet
(*,**) Proportion of POS tags in a tweet
(*) Number of words in a tweet
(*) Entropy of words in a tweet
(*) Distribution types. Following statistics are computed and used as individual features:

min, max, median, mean, std. deviation, skewness, kurtosis, and entropy.

(**) Part-of-Speech (POS) tag. There are nine POS tags: verbs, nuns, adjectives, modal

auxiliaries, pre-determiners, interjections, adverbs, wh-, and pronouns.

1.3.1.5 Sentiment features

Sentiment analysis is used to describe the emotions conveyed by a piece
of text, or more broadly, the attitude or mood of an entire conversation.
Sentiment extracted from social media conversations has been used to forecast
o✏ine events including financial market fluctuations [11] and is known to a↵ect
information spreading and social structure [61, 32, 10].

Our framework leverages several sentiment extraction techniques to gen-
erate various sentiment features:

• ANEW: Arousal, valence and, dominance scores are selected for analysis
of mood and sentiment based on theoretical foundations of these dimen-
sions [81]. Crowd-sourcing is used to annotate over 14k words along each
of the three dimensions.

• Happiness: To quantify happiness in a text, we use a dataset of over
10k words identified and annotated by researchers [48]. This word list
contains the most frequent words collected from Google books, New
York Times articles, music lyrics, and Twitter messages.

• Polarization and strength: This measure identifies a phrase as neu-
tral or polar and then disambiguates the polarity of the polar expres-
sions. [82].

• Emoticon: Pictorial representations of di↵erent facial expressions are
popular on social media. We used a lexicon of such symbols and character
sequences to identify positively and negatively associated text [2]. This
does not include emoji, although recent work exploring the popularity
of emojis in social media [59, 3] suggests that their inclusion would be
possible.

All these techniques rely on a lexicon to compute scores for each content
and there exist several alternatives one could consider [36]. One could extend
this analysis by adopting machine learning models trained solely to extract
features about sentiment. The complete list of sentiment features is found in
Table 1.5.
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TABLE 1.5: List of features extracted from sentiment analysis of content.

List of sentiment-features
Mean of happiness scores of aggregated tweets
Standard deviation of happiness scores of aggregated tweets
(***) Happiness scores of aggregated tweets
Mean of valence scores of aggregated tweets
Standard deviation of valence scores of aggregated tweets
(***) Valence scores of aggregated tweets
Mean of arousal scores of aggregated tweets
Standard deviation of arousal scores of aggregated tweets
(***) Arousal scores of aggregated tweets
Mean of dominance scores of aggregated tweets
Standard deviation of dominance scores of aggregated tweets
(***) Dominance scores of single tweets
(*) Happiness score of single tweets
(*) Valence score of single tweets
(*) Arousal score of single tweets
(*) Dominance score of single tweets
(*) Polarization score of single tweets
(*) Entropy of polarization scores of single tweets
(*) Positive emoticons entropy of single tweets
(*) Negative emoticons entropy of single tweets
(*) Emoticons entropy of single tweets
(*) Positive and negative score ratio of single tweets
(*) Number of positive emoticons in single tweets
(*) Number of negative emoticons in single tweets
(*) Total number of emoticons in single tweets
Ratio of tweets that contain emoticons
(*) Distribution types. Following statistics are computed and used as individual features:

min, max, median, mean, std. deviation, skewness, kurtosis, and entropy.

(***) For each feature, we compute mean and std. deviation of the weighted average across

words in the lexicon.

We note that both content and sentiment features are language-specific
and were trained on corpora of English-language tweets. Language-agnostic
evaluation is possible by using models trained without these two categories.

1.3.1.6 Temporal features

Temporal signatures are shown to be useful in the context of analyzing
content production and consumption, identification of online campaigns, and
evolution of online discussion [35, 30, 16, 79].

Basic temporal features indicate how frequently an account is active; a
human is unlikely to tweet hundreds of times per day. These features are
listed in the user class. More sophisticated temporal features are extracted
using distributions of time intervals between consecutive tweets, retweets, and
mentions. Table 1.6 lists the features in this category.
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TABLE 1.6: List of features extracted from temporal information.

List of temporal-features
(*) Time between two consecutive tweets
(*) Time between two consecutive retweets
(*) Time between two consecutive mentions
(*) Distribution types. Following statistics are computed and used as individual features:

min, max, median, mean, std. deviation, skewness, kurtosis, and entropy.

1.3.2 Possible directions for feature engineering

As Twitter introduces new functionality and usage patterns evolve over
time, one may consider creating new features to leverage these additional
behaviors. For example, Twitter has recently introduced quoted tweets, which
are essentially a retweet with additional user-supplied commentary.

Modern machine learning techniques can also be applied to extract more
sophisticated features from the existing data. Deep learning and vector em-
beddings are promising technologies that one can employ to extract features
for network structure [39, 69], language and sentiment [37, 25, 57]. Research
in this area may lead to features that capture not only basic statistics but
also semantics expressed by textual content [42, 49]. Of course, these more
sophisticated analyses come with computational costs that must be weighed
against one’s desire for fast classification results. We discuss implications of
recent technologies using deep learning more in detail in Sec. 1.4.

1.3.3 Feature analysis

With such a wide range of signals from various domains of available data
and meta-data, we want to quantify the interactions among features. Upon
examination of the pairwise correlations between features, we do notice that
some of these features are correlated and thus possibly redundant in the con-
text of social bot detection.

The magnitude of pairwise correlations is shown in Fig. 1.2. Features in
this representation are grouped by classes and sorted by average correlation
within each group.

The degree of correlation varies depending on the feature category. On
average we observe 0.21 correlation among friends features, which is largely
due to dependencies between profile meta-data. Content and network features
also exhibit some redundancy.

These correlated features demonstrate the importance of feature selection:
they suggest that we may be able to retain accuracy while extracting only a
subset of our features. The next section introduces di↵erent feature selection
methods and examines how they perform in identifying a subset of represen-
tative features.
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FIGURE 1.2: Intensities of pairwise correlation between feature values
across the dataset. Average pairwise correlations are also reported for the
features within each class.
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FIGURE 1.3: Performance comparison for di↵erent feature classes and clas-
sification methods.

1.3.4 Feature selection

We built a pipeline to evaluate classification models using subsets of our
features. This pipeline uses several o↵-the-shelf benchmark algorithms pro-
vided in the scikit-learn library [67]. Our models are trained and evaluated
using two di↵erent datasets: a honeypot dataset collected by Lee et.al [50]
and a manually annotated collection [78]. We combine these two datasets to
capture both simpler and more sophisticated bot behaviors, along with exam-
ples of humans accounts, from di↵erent time intervals. A model’s accuracy is
evaluated by measuring the Area Under the receiver operating characteristic
Curve (AUC) with 5-fold cross validation, and computing the average AUC
score across the folds using Random Forests, AdaBoost, Logistic Regression,
and Decision Tree classifiers.

1.3.4.1 Feature classes

To compare the discriminatory power of the di↵erent feature types, we
trained models using each class of features alone. We repeated the performance
evaluation experiments considering independently only the user, friends, net-
work, content, temporal, and sentiment feature classes. Fig. 1.3 presents the
performance of the classifiers using the di↵erent feature subsets in isolation.

We achieved the best performance with user meta-data features. Content
features are also e↵ective. Both yielded AUC above 0.9. Other feature classes
yielded AUC above 0.8. In addition to giving the best overall accuracy when
all features are considered, Random Forest models produce scores at least as
good as every other method when restricting to single feature classes.
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TABLE 1.7: Top features according to Random
Forests algorithm.

User number of friends
User number of favorites
Mentioned friends’ mean tweet count
User number of follower
User account age
Mentioned friends’ mean account age
Mention network mean edge strength
Mentioned friends’ mean profile description length
Tweet content mean adjective count
Mentioned friends’ mean number of followers

1.3.4.2 Top individual features

Given the performance of Random Forest models as compared to the other
models, as well as its interpretability and robustness to overfitting, we use
Random Forests in the rest of this analysis. This is also the algorithm used in
the production Botometer service.

The Random Forest method builds a number of decision trees. In each tree,
nodes represents a single condition about a feature value, designed to split the
dataset into two so that similar response values end up in the same set. The
split criterion can be either Gini impurity or information gain/entropy.

To enrich our understanding about important features, we extend our anal-
ysis beyond studying classes of features. To compute the importance of a single
feature in Random Forests, one can average across trees the contribution of
that feature in reducing impurity. We list the top features identified using this
method in Table. 1.7.

Below we briefly describe a few additional feature selection methods in-
spired by information theory. Further details can be found in a recent review
by Li et.al [54].

• CIFE: Conditional Informative Feature Extraction introduces class-
relevant redundancy to maximize the joint class-relevant information by
explicitly reducing the class-relevant redundancies among features [55].

• FCBF: Fast Correlation Based Feature solution tries to identify pairs
of features correlating with each other [84]. Once a group of correlated
features is identified, this method selects the subset of these features
that have smaller inter-dependencies.

• MRMR: This method aims to achieve feature selection by controlling
quality of features that satisfy Maximum dependency and Relevance,
and Minimum Redundancy [68].

Fig. 1.4 shows that the best accuracy can be obtained using as few as
20 features selected by CIFE or Random Forests (RF). In terms of accuracy,
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FIGURE 1.4: Classifier accuracy given by AUC of models trained using top
N features, as ranked by di↵erent feature selection methods.

RF and CIFE perform equally well. The MRMR and FCBF methods do not
perform as well. Comparing the top features chosen by each algorithm, CIFE
algorithms tend to pick network, content, and friend features; MRMR and
FCBF prefer content and sentiment features. Since FCBF is a subset selection
method, only a small set of feature is identified by the algorithm. The Random
Forest model ranks friend and user features more highly, as listed in Table 1.7.

1.4 Conclusions

While bots can be harmless or even useful parts of the social media ecosys-
tem, bot accounts that are not clearly identified as such can be used for
nefarious purposes. Since social bots can broadcast at a high rate and in coor-
dination with other bots, they can skew the online conversation by amplifying
the “volume” of the bot controller’s message and creating the appearance that
the message is coming from many independent sources. This can in term in-
fluence public opinion by overwhelming our capacity to discriminate quality
information [70] and by leveraging cognitive biases that lead people to pay
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attention to what is popular [65] and to trust content that seems to be shared
by social connections [45] or in a social group [47]. Given the amount of pub-
lic discourse taking place on social media platforms, it becomes crucial for
users and platforms to be able to distinguish such activities as early and as
accurately as possible.

Research on social bot detection aims to provide tools for identifying au-
tonomous entities. While the arms race between humans and deceptive bots is
likely to continue for years, advances in feature engineering and in the identifi-
cation of weaknesses of di↵erent classes of social bots will be key to preserving
our stance against malicious bot activities.

In this chapter, we presented the most common approaches used in systems
for identifying social bots. We focused on egocentric analysis methodology
due to its advantages with respect to data collection and algorithmic com-
plexity. Our system, Botometer, analyzes public information about a Twitter
account, extracting over a thousand features describing the account and its
neighbors [78]. Using these features, we created a classifier that scores an
account’s likelihood of being a bot. We examined the extracted features in
terms of their contribution to overall performance and redundancy within the
feature set.

Feature selection is as essential as feature engineering for improving the
performance of bot detection systems, especially when taking into consider-
ation trade-o↵s between accuracy and computational speed. Some machine
learning methods such as Random Forests can measure the importance of fea-
tures intrinsically by using ensembles of weak learners [14]. We analyzed the
top features identified by the Random Forest algorithm and also evaluated
other feature selection mechanisms in the recent literature [54]. Our analysis
points out that Random Forests can achieve over 90% accuracy, as measured
by AUC, using fewer than 20 features.

Let us discuss some future directions that one can pursue to design better
and semi-autonomous systems for social bot detection. Deep learning presents
natural extensions to some of our feature extraction methods [49]. Architec-
tures of deep neural networks (DNNs) can capture important patterns and
use those as features for learning algorithms. As such, DNNs may be useful
in identifying increasingly sophisticated bots.

Research into the use of these modern techniques for bot detection becomes
even more critical when considering how they may be used by bot creators.
Recent advances in DNN technologies accelerate fake persona generation [52,
9] and conversation models for social bots [75, 53]. Generative adversarial nets
can be used to simultaneously learn generative models for social bots and how
to trick detection systems [38, 71].

The task of social bot detection exhibits the characteristics of an arms race.
Both bot creators and the bot detection community work towards improving
their existing systems and try to exploit weaknesses of the adversary group. It
is our hope that the work presented here will provide a key advantage in the
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arms race against deceptive bot creators. By working together and sharing
public tools and data2 we won’t have to fight this battle alone.

2A public repository of social bot datasets and tools is available on the Botometer website
and we invite the community to contribute.
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[26] Juan Echeverŕıa and Shi Zhou. The ‘star wars’ botnet with >350k twitter
bots. Preprint 1701.02405, arXiv, 2017.

[27] Emilio Ferrara. Manipulation and abuse on social media. SIGWEB
Newsletter, Spring(4):1–9, 2015.

[28] Emilio Ferrara, Mohsen JafariAsbagh, Onur Varol, Vahed Qazvinian, Fil-
ippo Menczer, and Alessandro Flammini. Clustering memes in social
media. In Proc. IEEE/ACM Intl. Conf. on Advances in Social Networks
Analysis and Mining, pages 548–555. IEEE, 2013.

[29] Emilio Ferrara, Onur Varol, Clayton Davis, Filippo Menczer, and
Alessandro Flammini. The rise of social bots. Communications of the
ACM, 59(7):96–104, 2016.

[30] Emilio Ferrara, Onur Varol, Filippo Menczer, and Alessandro Flammini.
Detection of promoted social media campaigns. In Proc. of the Intl. Conf.
on Web and Social Media, 2016.

[31] Emilio Ferrara, Wen-Qiang Wang, Onur Varol, Alessandro Flammini,
and Aram Galstyan. Predicting online extremism, content adopters, and
interaction reciprocity. In Proc. of the Intl. Conf. on Social Informatics,
pages 22–39, 2016.

[32] Emilio Ferrara and Zeyao Yang. Quantifying the e↵ect of sentiment on
information di↵usion in social media. PeerJ Computer Science, 2015.

[33] Andrew J Flanagin and Miriam J Metzger. The role of site features,
user attributes, and information verification behaviors on the perceived
credibility of web-based information. New Media & Society, 9(2):319–342,
2007.



24 Bibliography

[34] Michelle C Forelle, Philip N Howard, Andrés Monroy-Hernández, and
Saiph Savage. Political bots and the manipulation of public opinion in
Venezuela. Technical Report 2635800, SSRN, 2015.

[35] Rumi Ghosh, Tawan Surachawala, and Kristina Lerman. Entropy-based
classification of retweeting activity on twitter. In Proc. of KDD workshop
on Social Network Analysis, August 2011.

[36] CJ Hutto Eric Gilbert. Vader: A parsimonious rule-based model for
sentiment analysis of social media text. In Proc. of the Intl. Conf. on
Weblogs and Social Media, 2014.

[37] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation
for large-scale sentiment classification: A deep learning approach. In Proc.
of the Intl. Conf. on Machine Learning, pages 513–520, 2011.

[38] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In Advances in neural information processing
systems, pages 2672–2680, 2014.

[39] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In Proc. of the ACM SIGKDD Intl. Conf. on Knowledge
Discovery and Data Mining, pages 855–864. ACM, 2016.

[40] Angela V Hausman and Je↵rey Sam Siekpe. The e↵ect of web interface
features on consumer online purchase intentions. Journal of Business
Research, 62(1):5–13, 2009.

[41] Stefanie Haustein, Timothy D Bowman, Kim Holmberg, Andrew Tsou,
Cassidy R Sugimoto, and Vincent Larivière. Tweets as impact indica-
tors: Examining the implications of automated bot accounts on twit-
ter. Journal of the Association for Information Science and Technology,
67(1):232–238, 2016.

[42] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espe-
holt, Will Kay, Mustafa Suleyman, and Phil Blunsom. Teaching machines
to read and comprehend. In Advances in Neural Information Processing
Systems, pages 1693–1701, 2015.

[43] Philip N Howard and Bence Kollanyi. Bots,#StrongerIn, and #Brexit:
computational propaganda during the UK-EU Referendum. Technical
Report 2798311, SSRN, 2016.

[44] Mohsen JafariAsbagh, Emilio Ferrara, Onur Varol, Filippo Menczer, and
Alessandro Flammini. Clustering memes in social media streams. Social
Network Analysis and Mining, 4(1):1–13, 2014.

[45] T. Jagatic, N. Johnson, M. Jakobsson, and F. Menczer. Social phishing.
Communications of the ACM, 50(10):94–100, October 2007.



Bibliography 25

[46] Yuede Ji, Yukun He, Xinyang Jiang, Jian Cao, and Qiang Li. Combating
the evasion mechanisms of social bots. Computers & Security, 58:230–
249, 2016.

[47] Youjung Jun, Rachel Meng, and Gita Venkataramani Johar. Perceived so-
cial presence reduces fact-checking. Proceedings of the National Academy
of Sciences, 114(23):5976–5981, 2017.

[48] Isabel M Kloumann, Christopher M Danforth, Kameron Decker Harris,
Catherine A Bliss, and Peter Sheridan Dodds. Positivity of the english
language. PLoS ONE, 7(1):e29484, 2012.

[49] Yann LeCun, Yoshua Bengio, and Geo↵rey Hinton. Deep learning. Na-
ture, 521(7553):436–444, 2015.

[50] Kyumin Lee, Brian David Eo↵, and James Caverlee. Seven months with
the devils: A long-term study of content polluters on twitter. In Proc. of
the AAAI Intl. Conf. on Web and Social Media, 2011.

[51] Adrian Letchford, Helen Susannah Moat, and Tobias Preis. The advan-
tage of short paper titles. Royal Society Open Science, 2(8):150266, 2015.

[52] Jiwei Li, Michel Galley, Chris Brockett, Georgios P Spithourakis, Jian-
feng Gao, and Bill Dolan. A persona-based neural conversation model.
Preprint 1603.06155, arXiv, 2016.

[53] Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan
Jurafsky. Deep reinforcement learning for dialogue generation. Preprint
1606.01541, arXiv, 2016.

[54] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Trevino
Robert, Jiliang Tang, and Huan Liu. Feature selection: A data perspec-
tive. Preprint 1601.07996, arXiv, 2016.

[55] Dahua Lin and Xiaoou Tang. Conditional infomax learning: An inte-
grated framework for feature extraction and fusion. In Aleš Leonardis,
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1.5 Glossary

Social bot: A social bot, also known as a sybil account, is a computer algo-
rithm that automatically produces content and interacts with humans on
social media.

Botnet: Coordinated collectives of software-controlled fake accounts operat-
ing on social media.

ROC: Receiver Operating Characteristic curve serves as a tool to visually
evaluate the performance of a binary classifier as the value of threshold is
varied.

AUC: A measure of quality for a classification system by computing the area
under the ROC curve.


